
Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix J

SWSC Domain
Engineering
Lessons-Learned

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-2

Contents

J.1 SWSC Domain Engineering Lessons-Learned...J-3
J.2 References..J-6

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-3

J.1 SWSC Domain Engineering Lessons-Learned

The Space and Warning Systems Center (SWSC) domain engineering team presented their lessons-
learned from two years experience on the Space Command and Control Architectural Infrastructure
(SCAI) re-engineering program in April 1995 at the Software Technology Conference, Salt Lake City,
Utah. The SWSC at Cheyenne Mountain, Colorado, maintains and modifies C2 systems for US. Space
Command, North American Aerospace Defense Command (NORAD), and Air Force Space Command
(AFSPC). These systems are comprised of 26 stovepipe systems, 12 million lines-of-code, 24 different
languages, 34 separate operating systems, and numerous proprietary hardware and software components
— all having complicated software support environments, as illustrated in Figure J-1. This maintainer’s
nightmare was fertile ground for architecture-based domain engineering.

Figure J-1. SWSC Software Re-engineering Environment [BULAT95]

The SCAI Project is using the domain engineering approach developed by the Software Technology for
Adaptable and Reliable Systems (STARS) program called megaprogramming. They used domain
analysis to create a domain-specific architecture to which all individual systems in the domain are
mapped to ensure product-line software reuse, as illustrated in Figure J-2.

(Event Detection) Cheyenne Mountain

(Correlation)

(Response)

CINC Mobile Alternate HQ

CMAH

Missile Space

C&C

Air

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-4

Figure J-2. SWSC Domain Engineering Approach [BULAT95]

The architecture developed for the SCAI program is decomposed into a layered domain requirements
model (DRM) and a set of application architectural models (AAM)s. The current scope of the DRM is
the SWSC space domain; each AAM is specific to one system in the domain. The layered DRM is a
modified Booch-type model, while the AAM is a network topology model and a mapping of application
tasks to machines. [BOOCH94] These models comprise the SCAI domain architecture, as illustrated in
Figure J-3.

Figure J-3. Domain/Application Model Relationship [BULAT95]

Mission
Message Handling
Displays
Database Access
System Services
COTS

Missile
Warning Space Weather

Sensor
Gateway Air Intel

System
Services

Message
Handling
Services

Data
Management

Services

User
Interface
Services

Command & Control Architecture Infrastructure

DoD TAFIM-Compliant COTS Software

COTS Hardware

Manual Orbit Mission

Sys_B Launch
Mission

DAF
Common

Domain

Application
Requirements Model

Event Layer

Application Layer

SATObs Sensor

Domain Classes

Application Classes

Generic
Launch Mission

T

Domain OSDs

Application OSDs

Used by

Sys_C

Sys_B

Sys_ASys_B

Sys_A

Template Use

Inherit

Comm

Computer C

Task A

Computer A

Task B

Computer B

Task C

Map Launch Scenario OSD to Task A
Map Manual Orbit Detection to Task B
Map Display Processing to Task C

Application B

Comm

Single Computer

Task A

Map Generic Launch Scenario OSD to Task A

Application C

Application Architecture Models

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-5

The SCAI is using a product-line software development approach which implements two software life
cycles: one life cycle where generalized domain products are developed, and a parallel life cycle where
individual applications are constructed from domain life cycle products, as illustrated in Figure J-4.
Obviously, domain products must exist prior to their use in the application. The problems the team
encountered associated with the requirement for prior construction of all domain components were:

• There were substantial up-front domain engineering costs not associated with developing any product.
(As DoD shrinks, these costs are increasingly difficult to justify.)

• Generalized models and generalized components can only be validated through their use on real
systems. Even within a single system, a reusable class must be validated in each of the contexts in
which it is used. Monolithic waterfall systems development has largely been discredited vis-à-vis
more iterative approaches to modeling and systems development.

• A large domain, such as C2, may contain many complex systems. In spite of the fact that all these
systems have much in common, it is unlikely that domain engineering can be initially accomplished
within the scope of every one of these systems before the need to deliver the first re-architected
system occurs.

Figure J-4. Iterative Two Life Cycle Domain/Application Engineering Process [BULAT95]

For the above reasons, the domain engineering process must allow for the iterative acquisition of domain
knowledge. The SCAI architecture framework was constructed from processes which are inherently
iterative; therefore, the overall process is iterative. As new systems are analyzed and the scope of the
DRM is extended, more domain missions are identified, new classes are created, and existing classes are
generalized. Newly generalized classes are then reinserted into existing missions and retested.

SWSC’s goal is to demonstrate that domain engineering will increase software quality, while decreasing
the cost of developing and maintaining families of related SWSC C2 systems. As of January 1995, the
first intermediate delivery of the SCAI system (the service layer) indicated that over 50% of the code was
reused or had been generated. Table J-1 illustrates the program costs for each release (both actual and
adjusted) and the amount of program code delivered at the end of each release. It shows the incremental
cost per line-of-code, the cumulative program cost, and the cumulative cost per line for each release. The
last column shows how initial costs are amortized. As more and more code is developed using the
megaprogramming approach, it becomes increasingly cheaper.

Domain Engineering

Application Engineering

Domain Management

Domain
Analysis

Domain Requirements Domain Architectural Domain Reusable
Components & GeneratorsModelModel

New

System

Existing
System
Artifacts

New System

Requirements

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-6

SCAI

PROGRAM
EXPENDITURES

($Millions)

ADJUSTED
COST*

($Millions)
INCREMENTAL

LOC
INCREMENTAL

COST/LOC

CUMULATIVE
COST

($Millions)
CUMULATIVE

COST/LOC

Pilot $2.9 $14.0 125K $112.0 $14.0 $112.0

Release 1 $3.4 $8.5 267K $32.0 $22.5 $57.0

Release 2** $2.6 $6.5 230K $28.0 $29.0 $47.0

Release 3** $2.0 $.50 150K $33.0 $34.0 $44.0

TOTALS $10.0 $34.0 772K

* Values adjusted to full life cycle cost plus prior domain work.
** Estimated.

Table J-1. SCAI Cost with Megaprogramming

J.2 References

[BOOCH94] Booch, Grady and Doug Bryan, Software Engineering with Ada, Third Edition,
Benjamin/Cummings Publishing Company, Redwood City, California, 1994

[BULAT95] Bulat, Brian G., “Space & Warning Systems Center Domain Engineering Experiences,”
paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, 1995

	Appendix J SWSC Domain Engineering Lessons-Learned
	Contents

